

Advanced Air Transport Technology (AATT) Project

Mr. Scott Anders, Deputy Project Manager (Acting)

Dr. Nateri Madavan, Associate Project Manager, Technology

Mr. Steve Helland, Associate Project Manager, Execution

Ms. Jennifer Cole, Associate Project Manager, Integrated Testing

Project Overview – Town Hall Ames Research Center August 8, 2017

NASA Aeronautics Program Structure

Aeronautics Research Mission Directorate

------ Mission Programs ------

Seedling Program

Advanced Air Vehicles (AAVP) Jay Dryer, Director

Integrated Aviation Systems (IASP) Ed Waggoner, Director

Airspace Operations And Safety (AOSP) **Bob Pearce, Director (Acting)** **Transformative Aeronautics** Concepts (TACP) John Cavolowsky, Director

Advanced Air Transport Technology (AATT)

UAS Integration in the NAS

Airspace Technology Demonstration (ATD)

Transformational Tools and Technologies (TTT)

Revolutionary Vertical Lift Technology (RVLT)

Commercial Supersonic

Technology (CST)

Flight Demonstration and Capabilities (FDC)

SMART NAS – Testbed for Safe Trajectory **Based Operations**

Convergent Aeronautics Solutions (CAS)

Advanced Composites

(ACP)

Safe Autonomous **System Operations** (SASO)

University Leadership Initiative (ULI)

Aeronautics Evaluation and Test Capabilities (AETC)

Hypersonic Technology (HTP)

NASA Aeronautics

Strategic Implementation Plan (SIP)

3 Mega-Drivers

6 Strategic Research & Technology Thrusts

Safe, Efficient Growth in Global Operations

• Enable full NextGen and develop technologies to substantially reduce aircraft safety risks

Innovation in Commercial Supersonic Aircraft

Achieve a low-boom standard

Ultra-Efficient Commercial Vehicles

AATT

· Pioneer technologies for big leaps in efficiency and environmental performance

Transition to Alternative Propulsion and Energy

Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

Real-Time System-Wide Safety Assurance

 Develop an integrated prototype of a real-time safety monitoring and assurance system

Assured Autonomy for Aviation Transformation

Develop high impact aviation autonomy applications

NASA Subsonic Transport System Level Measures of Success

Use industry pull to mature technology that enables aircraft products that meet near-term metrics, enabling *community* outcome 1, and NASA push to mature technology that will support development of new aircraft products that meet or exceed mid- and far-term metrics, enabling *community* outcomes 2 and 3

v2016.1

TECHNOLOGY BENEFITS	TECHNOLOGY GENERATIONS (Technology Readiness Level = 5-6)		
	Near Term 2015-2025	Mid Term 2025-2035	Far Term beyond 2035
Noise (cum below Stage 4)	22 - 32 dB	32 - 42 dB	42 - 52 dB
LTO NOx Emissions (below CAEP 6)	70 - 75%	80%	> 80%
Cruise NOx Emissions (rel. to 2005 best in class)	65 - 70%	80%	> 80%
Aircraft Fuel/Energy Consumption (rel. to 2005 best in class)	40 - 50%	50 - 60%	60 - 80%

Evolutionary

Revolutionary

Transformational

Advanced Air Transport Technology Project

Vision

Enable Aircraft with Dramatically Improved Energy Efficiency, Environmental Compatibility, and Economic Impact for the Nation

Mission

Explore and develop viable game-changing concepts, technologies, and tools to improve vehicle and propulsion system energy efficiency and environmental compatibility

Scope

Subsonic fixed-wing commercial transport aircraft

Evolution of Subsonic Transports B-707 B-787 1903 1930s 1950s 2000s

Portfolio Development: N+3 Advanced Vehicle Concept Studies Summary

Boeing, GE, GA Tech

Advanced concept studies for commercial subsonic transport aircraft for 2030-35 Entry into Service (EIS)

NG, RR, Tufts, Sensis, Spirit

AVIATION WEEK

GE, Cessna, GA Tech

Trends:

- Tailored/multifunctional structures
- High aspect ratio/laminar/active structural control
- Highly integrated propulsion systems
- Ultra-high bypass ratio (20+ with small cores)
- Alternative fuels and emerging hybrid electric concepts
- Noise reduction by component, configuration, and operations improvements

Copyright Penton Media.. Used with permission

AATT Project Technical Challenges

Based on Goal-Driven Advanced Concept Studies

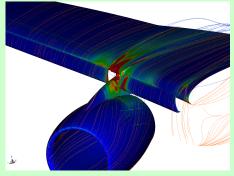
Goals **Metrics (Far Term)**

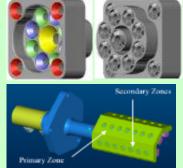
Noise Stage 4, 42-52 dB cum **Emissions (LTO)** CAEP6, >80%

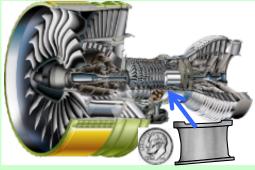
Emissions (cruise) 2005 best, >80%

Energy Consumption 2005 best, 60-80%

Goal-Driven Advanced (N+3) **Concepts**




Investments in both Near-Term Tech Challenges and Far-Term Vision


2.1 Higher Aspect Ratio Optimal Wing

3.1 Fan and High Lift Noise

4.1 Low NOx Fuel-Flex Combustor

4.2 Compact High OPR **Gas Generator**

5.2 Hybrid Gas Electric Propulsion Concept

6.1 Integrated BLI System

4.3 Engine Icing; 6.2 Airframe Icing

TC 2.1(FY19): Higher Aspect Ratio Optimal Wing, TRL 3

Objective

Enable a 1.5-2X increase in the aspect ratio of a lightweight wing with safe structures and flight control (TRL 3)

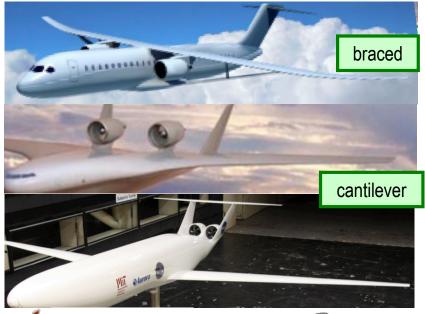
Technical Areas and Approaches

Performance Adaptive Aeroelastic Wing (PAAW)

- Distributed control effectors, robust control laws, missionadaptation and optimization
- Actuator/sensor structural integration

Passive Aeroelastic Tailored Wing (PATW)

Passive aeroelastic tailored loadpath structures

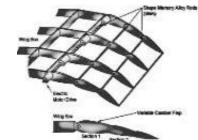

Transonic Truss-Braced Wing (TTBW)

External bracing / Passive drag reduction concepts
 Active Flow Control Wing (AFCW)

- Transonic drag reduction; simple high-lift system
 Natural Laminar Flow Wing (NLFW)
- Design approaches for NLF on transports

Benefit/Payoff

- 20% wing structural weight reduction
- Wave drag benefits tradable for weight or other parameters
- Concepts to control and exploit structural flexibility
- Optimal wing AR increase (50% cantilever, 100% braced)



passive/active, advanced aerodynamics

adaptive control effectors

AFC-based high-lift concepts

TC 3.1(FY19): Fan and High-Lift Noise, TRL 5

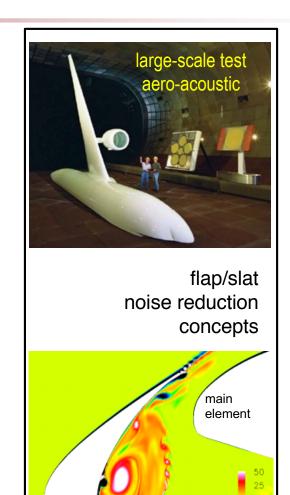
Objective

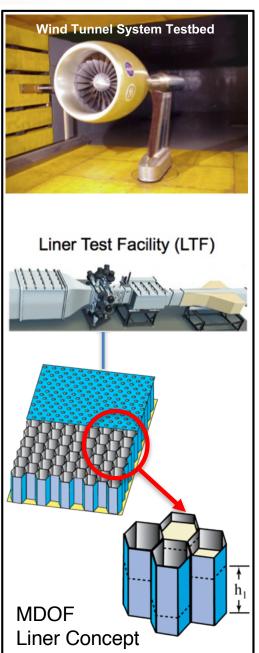
Reduce fan (lateral and flyover) and highlift system (approach) noise on a component basis by 4 dB with minimal impact on weight and performance (TRL 5)

Technical Areas and Approaches

Airframe Noise

- Flap and slat noise reduction concepts
- Landing gear noise reduction concepts


Acoustic Liners and Duct Propagation


Multi-degree-of-freedom, low-drag liners

Benefit/Payoff

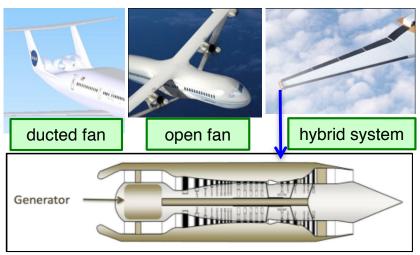
Component noise reduction with minimal impact on weight and performance

- 12 dB cum noise reduction
- Liner and non-active-flow-control high-lift system technology have early insertion potential

TC 4.1(FY19): Low NOx Fuel-Flex Combustor, TRL 3

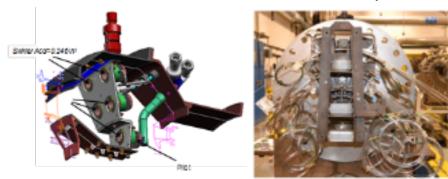
Objective

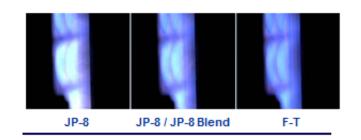
Reduce NOx emissions from fuel-flexible combustors to 80% below the CAEP6 standard with minimal impact on weight, noise, or component life (TRL 3)


Technical Areas and Approaches

Fuel-Flexible Combustion

Small core injection methods, alternative fuel properties, combustion stability techniques


Benefit/Payoff


- Lower emissions: NOx reduction of 80% at cruise and 80% below CAEP6 at LTO and reduced particulates
- Compatible with thermally efficient, high OPR (50+) gas generators
- Compatible with gas-only and hybrid gaselectric architectures and ducted/unducted propulsors
- Compatible with alternative fuel blends

Advanced combustor required for gasonly and hybrid architectures

Low-emission flametube concepts

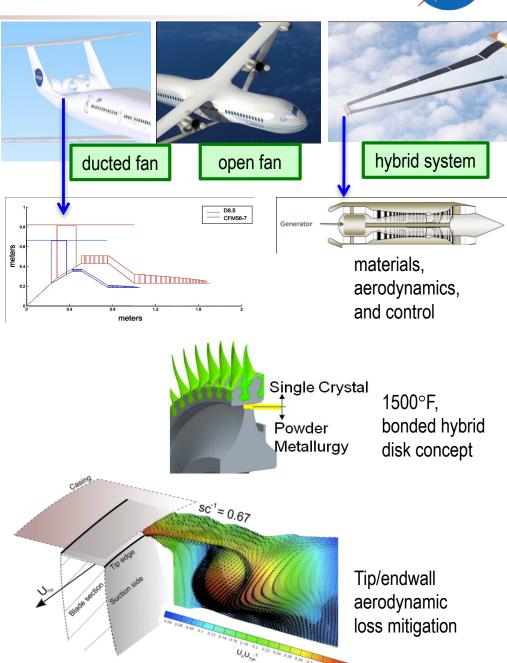
TC 4.2(FY20): Compact High OPR Gas Generator, TRL 4

Objective

Enable reduced size/flow high pressure compressors and high temperature disk/seals that are critical for 50+ OPR gas generators with minimal impact on noise and component life (TRL 4)

Technical Areas and Approaches

Hot Section Materials


- 1500°F hybrid disk and coatings
- 1500°F capable non-contacting seal

Reduced Size HPC for High OPR Engines

Minimize losses due to short blades/vanes

Benefit/Payoff

- Advanced compact gas-generator core architecture and component technologies enabling BPR 20+ growth by minimizing core size
- Thermally efficient, high OPR (50+) engines

Wu et al. Exp. Fluids, 2010, 1011

Miorini et al., J. Turbomachinery 2012, AIAA Journal 2012

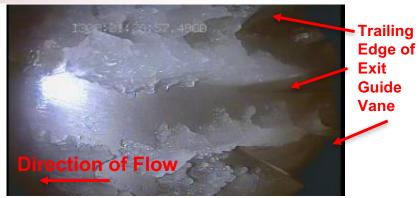
TC 4.3 (FY21): Engine Icing, TRL 2

Objective

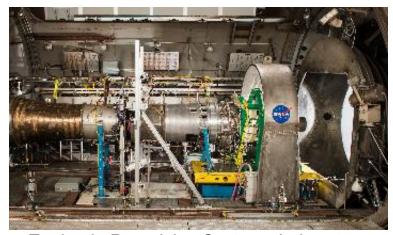
Predict likelihood of icing events with 90% probability in current engines operating in ice crystal environments to enable icing susceptibility assessments of advanced ultraefficient engines (TRL 2)

Technical Areas and Approaches

Icing Prediction Analysis Tool


- Engine conditions conducive to ice formation
- Rate of ice growth/engine effects

Fundamental Physics and Engine Icing Tests


 Study ice crystal icing in GRC Propulsion Systems Laboratory to validate tools

Benefit/Payoff

- Enable analysis of ice crystal icing effects on turbofan engines
- Design tools adapted for N+3, compact core, higher bypass ratio turbofan engines to assess icing impacts during development

Ice Formation inside Engine in PSL

Engine in Propulsion Systems Laboratory for Icing Test

Fundamental Physics Test Ice Accretion

Engine in Ice Crystal Cloud 12

TC 5.2 (FY19): Gas-Electric Propulsion Concept, TRL 2 🔯

Objective

Establish viable concept for 5-10 MW hybrid gas-electric propulsion system for a commercial transport aircraft (TRL 2)

Technical Areas and Approaches

Propulsion System Conceptual Design

 Early selection of system concepts that allow drill-down in issues of system interaction concept refinement

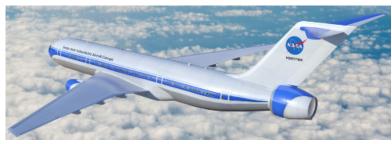
Integrated Subsystems

- Develop flight control and mission operations methodology for distributed propulsion
- Explore component interactions, power management, and fault management

High Efficiency/Power Density Electric Machines

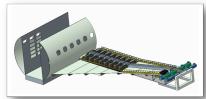
- Explore conventional and non-conventional topologies
- Integrate novel thermal management
- Demonstrate component maturation

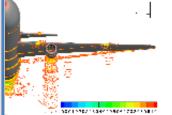
Flight-weight Power System and Electronics


- Develop and demonstrate powertrain systems and components
- High voltage, MW power electronics, transmission, protection

Enabling Materials

- Insulators and conductors for high power and altitude components
- Nanocomposite magnetic materials for targeted machines and drives


Benefit/Payoff


- Enable paradigm shift from gas-turbine to electrified propulsion
- Reduce fuel & energy consumption, emissions, and noise

Exploring tube-and-wing architectures

Powertrain, Controls and Flight Simulation Testbeds and advanced CFD

Advanced Materials and Novel Designs for Flightweight Power

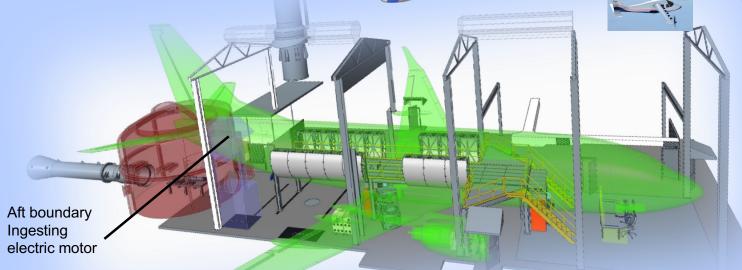
STARC-ABL Turboelectric Concept

NASA Electric Aircraft Testbed (NEAT)

Technology: Vehicle and propulsion concepts and

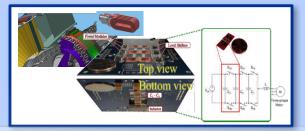
benefits studies

 Design and test electrified airplane powertrains that are flightweight, safe, reliable, fault tolerant


 NASA's STARC-ABL configuration to be tested in NEAT testbed in 2018 at full power

X-Planes: Near and Mid-term

- Regional Jet or Single Aisle demo before 2025
- Thin Haul Commuter
- Low cost fixed wing vertical take-off and landing (VTOL)
- Maxwell X-57 (battery, distributed)



NASA Electric Aircraft Testbed (NEAT)

Technology: Powertrain Components

- Electric machines
- Power electronics
- Integrated turbines, generators
- Controls
- **Transmission**

Technology: Enabling Materials and Devices

- Insulation
- Conductors
- Magnetic materials
- Power electronics devices

Goal: Flight tests, ground demos and technology readiness by 2025 to support 2035 Entry into Service

TC 6.1(FY17): Integrated BLI System, TRL 3

Objective

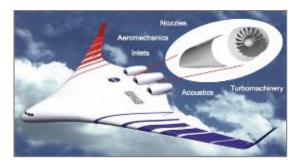
Achieve a vehicle-level net system benefit with a distortion-tolerant inlet/fan, boundary-layer ingesting propulsion system on a representative vehicle (TRL 3)

Aerodynamic Configuration

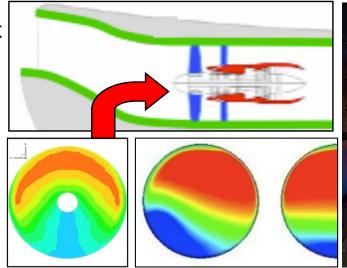
Novel configurations and installations

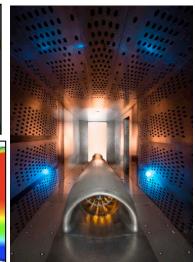
Distortion-Tolerant Fan

Robust, integrated inlet/fan design


Benefit/Payoff

- Will demonstrate a net system-level performance benefit for BLI propulsion that is applicable and beneficial to a variety of mid-term and long-term advanced vehicle concepts
- Developing distortion-tolerant fan technology is relevant to near-term conventional, short-duct installations requiring enhanced operability capability




Boundary-layer ingestion for drag reduction

Distortion-tolerant fan required for net vehicle system benefit

Boundary Layer Ingesting Inlet

Boundary Layer Ingesting Inlet Distortion Tolerant Fan (BLI²DTF) Wind Tunnel Test

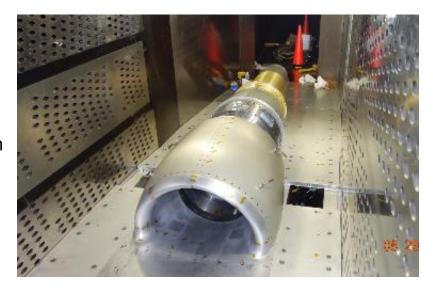
Problem

- Ingesting turbulent boundary layer into propulsor fan is predicted to have significant impact on fan performance
- Highly distorted inflow is also predicted to significantly increase structural stress and aeroelastic instability of the fan

Objective

 Demonstrate boundary layer ingesting (BLI) distortion tolerant fan performance, operability, and structural characteristics at cruise conditions

Approach


- Design and fabricate a scale-model, boundary layer ingesting fan system with inlet and 22" distortion-tolerant fan
- Conduct cruise performance test in the NASA GRC 8'x6' wind tunnel to demonstrate system level benefits of BLI propulsion

Status

- Test Completed during first quarter FY17
- Fan performance (aerodynamics and aero-mechanics) exceeded all pre-test predictions

Significance

 This wind tunnel test represents the first-ever demonstration of a BLI propulsion concept, designed to withstand the highly distorted inflow, and verify the performance and operability of the system near design. This enables new technology approach for future transports

Complex first-of-its-kind experiment to reduce industry risk

SAI: BLI Technology Integration Study

Problem

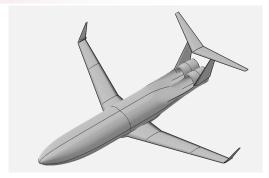
Prior analytical and experimental research in AATT has shown a positive aero-propulsive benefit for Boundary Layer Ingestion (BLI). However, the vehicle-level system impact of BLI is still not fully explored. A study that leverages learning from previous AATT BLI research is needed to quantify and understand the system impact of an integrated BLI system on an aircraft.

Objectives

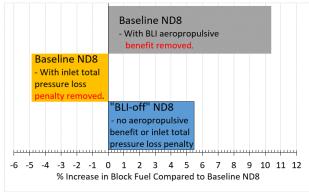
Demonstrate a vehicle-level net system benefit with a distortion-tolerant inlet/fan, boundary-layer ingesting propulsion system on a representative vehicle. (AATT Tech Challenge 6.1, Integrated BLI System)

Approach

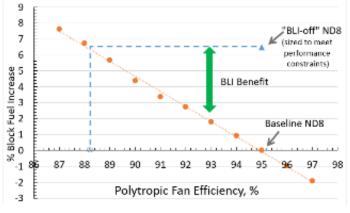
The NASA "D8" configuration was chosen as the representative advanced vehicle concept for which the impact of BLI was explored. The MIT power balance method was used to model the BLI aero-propulsive impacts. Knowledge from the NASA/UTRC BLI2DTF experiment was used to determine the fan performance and weight penalties associated with inflow distortion caused by BLI.


Results

Although the BLI2DTF data reduction continues under a separate effort, this SA&I study indicates that BLI provides a net fuel consumption benefit up to a fan efficiency decrement of ~7-9%.


Significance

This study demonstrated that BLI can have a positive impact at the vehicle level. The magnitude of the impact is highly dependent on the vehicle and BLI implementation.


Vehicle-level benefit for BLI, evaluated for NASA D8 concept aircraft

NASA D8 Concept

Relative Impact of BLI Benefits & Penalties

Variation of Block Fuel with Fan Efficiency

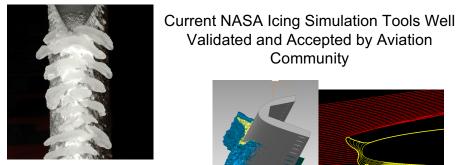
TC 6.2(FY21): Airframe Icing, TRL 2

Objective

Enable assessment of icing risk with 80% accuracy for advanced ultra-efficient airframes operating in supercooled liquid droplet environments (TRL 2)

Technical Areas and Approaches

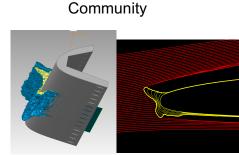
3D Ice Accretion Prediction Tool

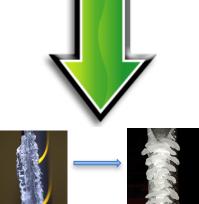

 Develop LEWICE3D to assess ice accretion on complex airframe features

Ice Protection Systems

Integrate assessment of ice protection systems into LEWICE3D as airframe design tool

Benefit/Payoff


- LEWICE3D validated against experimental data to be used as design tool for advanced N+3 airframes
- Ice protection system evaluation capability to mitigate icing issues for N+3 airframes


Scalloped Ice Shape on Swept Wing

Ice Growth on 65% Scale **CRM Wing Section Model**

Validated and Accepted by Aviation

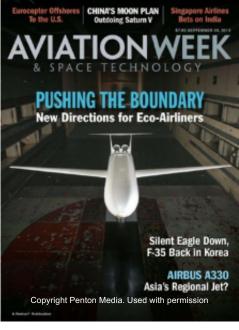
microns

Expanding Current Icing Simulation Tools to Swept Wing and Freezing Rain/Drizzle Icing

New Aviation Horizons - Ultra-Efficient Subsonic Transport (UEST) Demonstrators

HWB Concept 1 (Tailless)

- Hybrid/blended wing body without a tail
 - Non-circular, flat-walled pressurized composite fuselage
- Upper aft fuselage mounted propulsion
- · Propulsion noise shielding
- Unique cargo door for military/civil application


HWB Concept 2 (Tail w/OWN)

- Hybrid/blended wing body with conventional T-tail
 - Non-circular, oval pressurized composite fuselage
- Aft, Over-the-Wing Nacelles
- Fan noise shielding from wing
- Unique cargo door for military/civil application

TTBW-Transonic Truss-Braced Wing

- Truss-braced, thin, very high aspect ratio wing with folding tips
- Conventional, circular pressurized fuselage
- Conventional T-tail
- Conventional under-wing propulsion system w/hybrid-electric variant

D8-Double Bubble

- Double bubble fuselage with unique Pi-Tail
 - Non-circular, pressurized composite fuselage
- Upper aft fuselage boundary layer ingesting (BLI) propulsion system
- Propulsion noise shielding
- Thin, flexible, high aspect ratio wing

www.nasa.gov 21

AATT Project Research Team

NASA Ames, Armstrong, Glenn, and Langley Research Centers

Three Main Components:

- NASA in-house research
- Collaborations with partners (OGA, Industry, Academia)
- Sponsored research by NASA Research Announcement (NRA)

Honeywell

